

31 July 2024

Document Ref: AKS2023-0062 | Rev 0

Austino Property Group C/- Harrison Grierson PO Box 5760, Victoria St West Auckland 1142

Attention: Claire Covington

Dear Claire

RE: PROPOSED PRIVATE PLAN CHANGE – RFI RESPONSES 100 HOBSONVILLE ROAD, HOBSONVILLE

Appended to this cover letter are CMW's Geotechnical responses to specific items raised by Auckland Council following the submission of CMW Geotechnical Assessment Report, reference AKS2023-0062AB Rev 0, dated 30 November 2023, in support of a proposed private plan change (PPC).

For and on behalf of CMW Geosciences

Prepared by:

Fahad Khan Project Geotechnical Engineer

Reviewed by:

Chris Ritchie Principal Engineering Geologist

Authorised by:

Eugene Crestanello Principal Engineering Geologist

- Distribution: 1 electronic copy to Austino Property Group via email Original held at CMW Geosciences
- Appendix A: Table 1 RFI Responses
- Appendix B: Geomorphological Map
- Appendix C: CPT Test Location Plan
- Appendix D: Liquefaction Analyses Results
- Appendix E: Geohazards Assessment & Mitigation Risk Register

Table 1: RFIs and responses

No.	Geotechnical Requests by Auckland Council	Responses by CMW
G1	Please provide copies of the Geotechnical Investigation Report and Geotechnical Completion Report (prepared by Geotek Solutions Ltd) that are referenced in Section 3.2 of the Geotechnical Assessment Report.	PDF copy of the GIR and GCR have been included in the covering email.
G2	It is understood that hand auger boreholes were undertaken on site by Geotek in 2019. Could you please confirm the source of this information and reference to the reporting? Please clarify the purpose of these hand auger boreholes (e.g. was the intention to support the proposed private plan change or were the hand auger boreholes undertaken for some other development)	The historic hand augers were provided to us by our client Austino Property Group we undertake the drilling of a spread of hand augers to provide an initial understanding of apart from a covering email with brief factual interpretation which has not been source reporting undertaken and there were no development proposals at that time.
G3	Please confirm if the site walkover and geomorphological mapping have been undertaken by an engineering geologist. If so, please provide supporting information. If not, please carry out these exercises and provide the required information.	We can confirm that a site walkover was undertaken by an experienced Geologist and geomorphological features identified when compared with the aerial photographs. The observations made on site in conjunction with the previous desktop study are pregeomorphological map in Appendix B.
G4	Please provide a geomorphological map for the site.	See response G3 above.
G5	Please re-assess the liquefaction vulnerability and update Section 5 accordingly	6 CPT tests were undertaken in the locations identified on the site plan attached in Ap liquefaction susceptibility The methodology of assessment and results are presented in Appendix D which confi is low as well as the Probability of Liquefaction is also low.
		These results are in keeping with the assessment in the GAR.
G6	Please provide natural hazard risk assessment (including risk categorisation) for the site.	The Geohazards Assessment & Mitigation table in section 5 of the GAR has been upda Appendix E.
11	 Please confirm or clarify the following points in relation to mitigation methods: a) Whether geotechnical mitigation works (e.g. counterfeit drains) would need to occur on the neighbouring land to support this PPC and/or would more efficient mitigations be available if the neighbours land could be assessed; and b) What extent of geotechnical mitigation works would be required to ensure stable residential sites or road can be developed along the western boundary of Block 2? If there has been any investigation done to determine whether stormwater devices could be located anywhere along the western boundary of the PCA, or if there are limitations on device and outlet location. 	 There are no changes to the Assessment Outcomes nor Mitigation measures. a) At this early stage, we do not consider it a necessity to undertake construction of the current property boundary. Whilst there may be some efficiencies in landforr several alternative options that can be explored which we describe in brief below b) Where the risk of slope instability by way of soil creep is confirmed in the future, comprise a combination of the following measures to resist the loss of lateral, do i) Keyways (or shallow shear keys) along the toe of fill embankments; ii) Retaining walls with increased cantilever embedment; and iii) In extreme instances, in-ground palisade wall retaining structures could The requirement as well as design for such measures will be driven by future dev c) As highlighted in our Geohazards Assessment, stormwater discharge via on-site s account of the very low permeability clays as well as the increased risk of slope ir discharged to the existing drainage features via a reticulation network.
12	Please confirm whether the proposed road connections, as indicated in Precinct Plan 2 (Hobsonville Grove Precinct), are feasible from a geotechnical perspective.	The suggested road connections in Precinct Plan 2 are generally considered to be fease albeit challenging given the crossing of gully drainage features which will require struct

who we understand engaged Geotek to g of ground conditions. We understand that burced, there was no formal geotechnical

and there were no additional

presented on the appended

Appendix C to assess site-specific

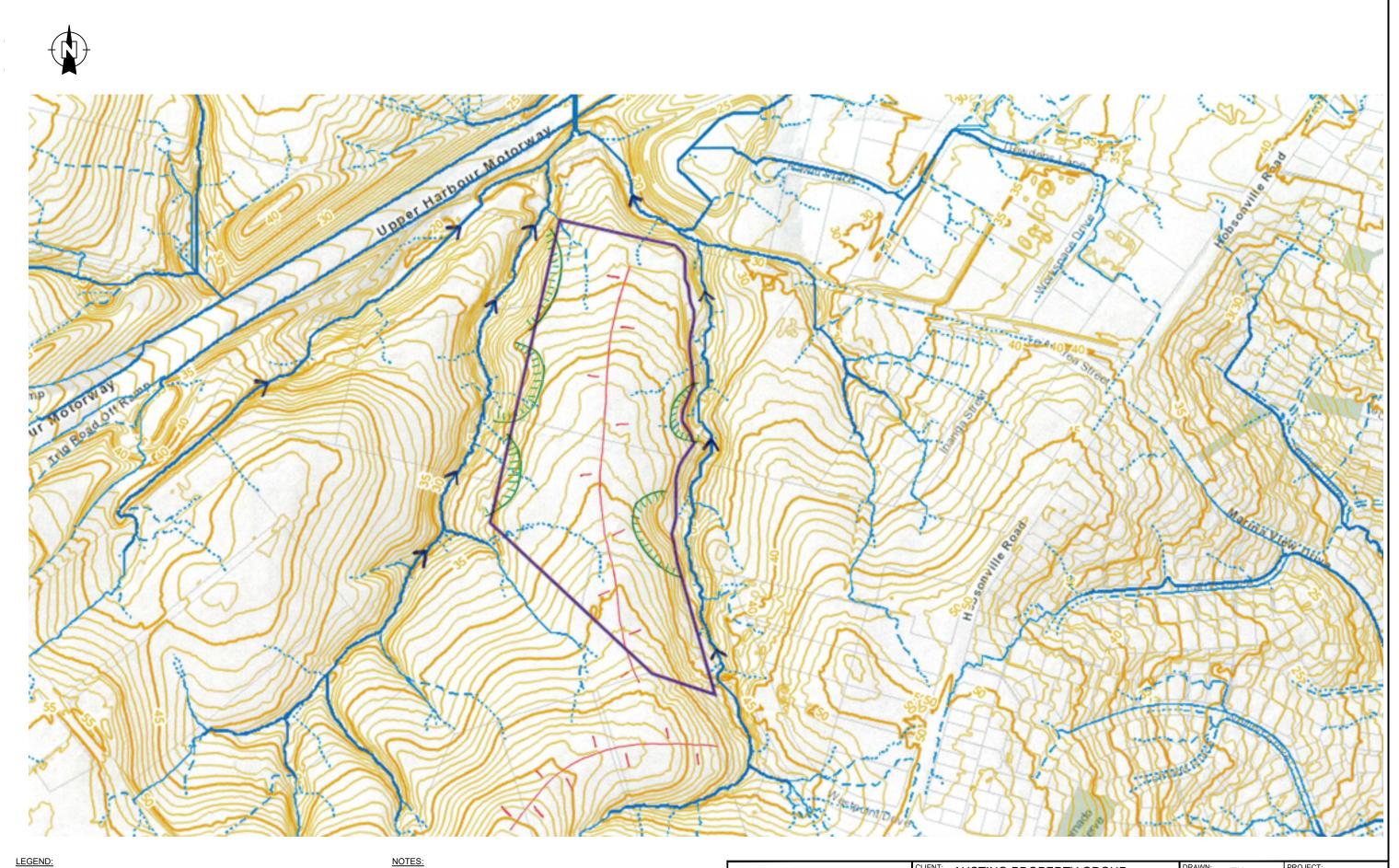
nfirms that the risk of Liquefaction Potential

odated to include Risk Ratings as attached in

of subsoils drains and/or earthworks across orm design by having such access, there are ow.

re, we consider that mitigation options could downslope soil support:

ld be adopted.


evelopment proposals at RC stage.

e soakage is not considered feasible on e instability. Stormwater should be

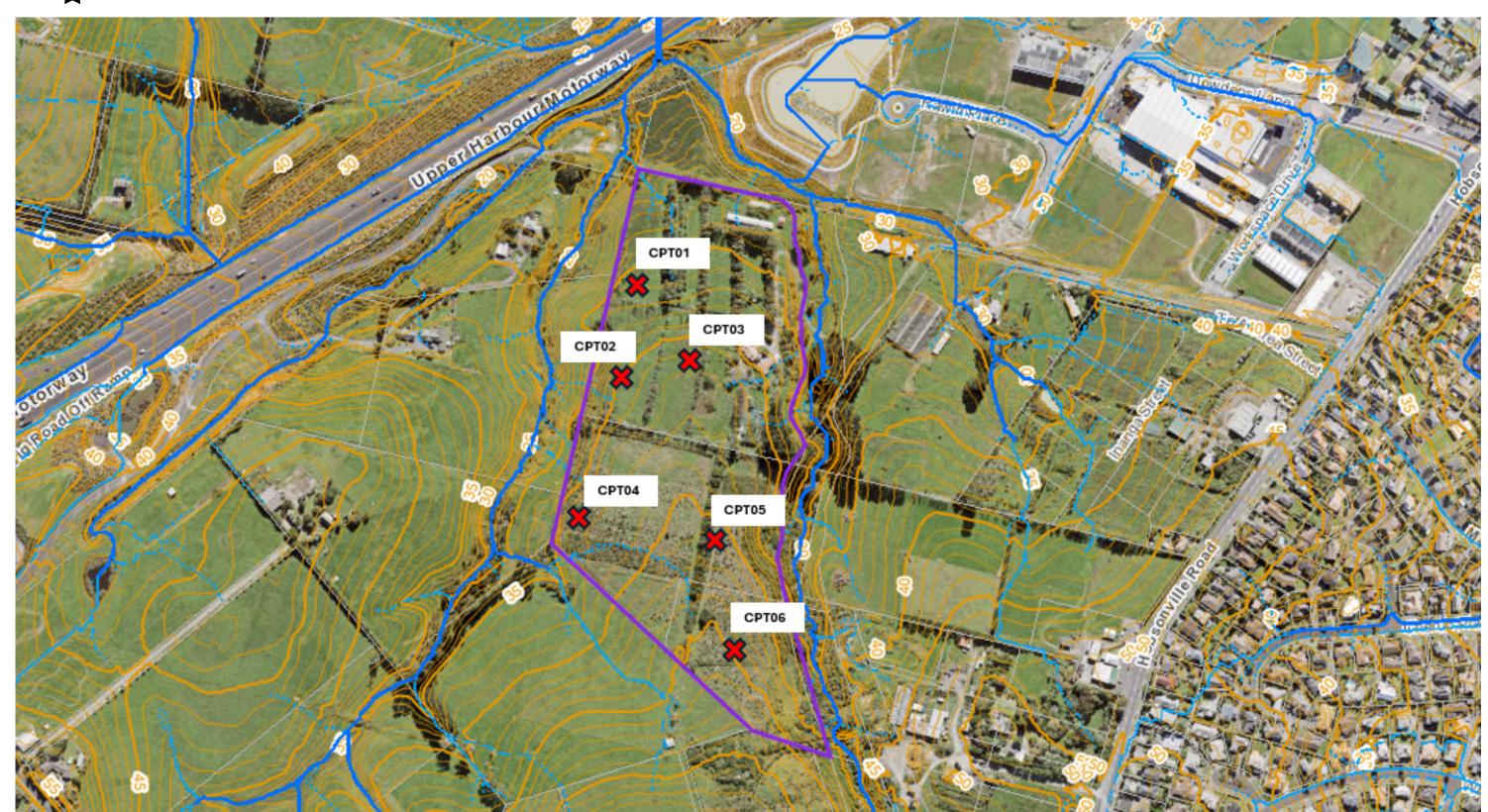
easible from a geotechnical perspective ructures such as bridges and/or culverts.

APPENDIX B Geomorphological Map

LEGEND:

Overland Flow Path - 3ha to 100ha Ridge Line Property Boundary Soil creep headscarp

Base plan adapted from AC Geo Maps
 Arrows on flow paths indicate flow direction



TY GROUP	DRAWN: FK	PROJECT:
		AKS2023-0062
	CHECKED: EC	DRAWING: 01
E ROAD,		01
	REVISION: Rev 1	SCALE:
CAL PLAN	DATE: 30/07/2024	SHEET:
	00/01/2021	A3 L

LEGEND:

CPT Locations

*

1. Base plan adapted from AC Geo Maps

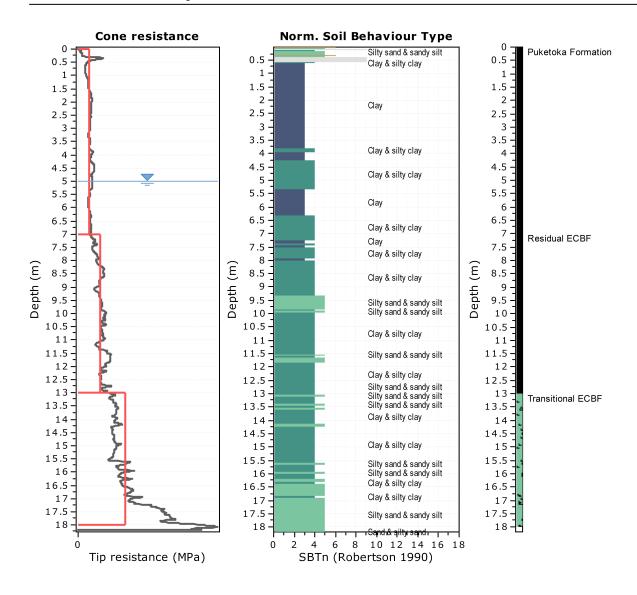
NOTES:

TY GROUP	DRAWN: FK	PROJECT: AKS2023-0062
E ROAD,	CHECKED: EC	DRAWING: 02
	REVISION: Rev 1	SCALE:
N PLAN	DATE: 30/07/2024	SHEET: A3 L

APPENDIX D Liquefaction Analyses Results

Location: 100 Hobsonville Road

CPT: CPT01


Total depth: 18.18 m, Date: 29/07/2024

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

Depth (m) Elevation: 0.00 (m)	Description	qt (MPa)	Ksbt (m/s)	N 60	Es (MPa)	Dr	Phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR	Gamma (kN/m³)
0.5	Puketoka Formation	1.3	-	6.0	-	-	-	10.2	36.1	88.2	1.7	8.0	17.6
1													
1.5													
2													
2.5													
3.5													
4													
4.5													
5 5.5													
6													
6.5													
7	Residual ECBF	2.6	7.37E-8	10.5	-	-	-	19.0	59.1	184.9	1.4	6.3	17.8
7.5													
8.5													
9													
9.5													
10.5													
11													
11.5													
12													
	Transitional FORF		2 505 7	20.2	107 5	25.0	26.6	41.0	110.4				10.0
	Transitional ECBF	5.5	2.58E-7	20.3	107.5	35.9	36.6	41.8	110.4	-	-	-	19.0
14.5 15													
15.5													
15.5 16 16.5													
0 1 2 3 4													
Tip resistance (MPa) IC													

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 7.00 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.33 ± 0.31 MPa Sleeve friction: 0.00 ± 61.36 kPa Ic: 0.00 ± 2.78 σ_v ': 46.35 ± 34.49 kPa SBTn: 0SBTn description: N/A Schneider zone: Zone 1a Schneider desc.: Silts and low Ir clays

Estimation results

Permeability: $0.00E+00 \pm 1.35E-06$ m/s N₆₀: 6.01 ± 1.32 blows Es: 0.00 ± 0.00 MPa Dr (%): 0.00 ± 0.00 ϕ (degrees): 0.00 ± 0.00 ° Unit weight: 17.62 ± 0.66 kN/m³ Constrained Mod.: 10.17 ±2.42 MPa Go: 36.10 ±8.61 MPa Su: 88.20 ±21.48 kPa Su ratio: 1.73 ±1.35 O.C.R.: 7.97 ±6.21

Code: Residual ECBIStart depth: 7.00 (m), End depth: 13.00 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 2.55 \pm 0.50 MPa Sleeve friction: 47.18 \pm 13.72 kPa Ic: 2.66 \pm 0.10 σ_v ': 124.58 \pm 13.59 kPa SBTn: 4 SBTn description: Clay & silty clay Schneider zone: Zone 1b Schneider desc.: Clays

Estimation results

- Permeability: 7.37E-08 ±5.77E-08 m/s N₆₀: 10.51 ±1.72 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 ϕ (degrees): 0.00 ±0.00 ° Unit weight: 17.78 ±0.39 kN/m³
- Constrained Mod.: 19.05 ±3.85 MPa Go: 59.13 ±9.95 MPa Su: 184.93 ±38.81 kPa Su ratio: 1.37 ±0.24 O.C.R.: 6.31 ±1.11

.:: Layer No: 3 ::.

Code: Transitional ESEart depth: 13.00 (m), End depth: 18.00 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: 5.52 ± 2.55 MPa Sleeve friction: 101.90 ± 43.63 kPa Ic: 2.48 ± 0.13 σ_v ': 175.28 ± 12.80 kPa SBTn: 5SBTn description: Silty sand & sandy silt Schneider zone: Zone 1a Schneider desc.: Silts and low Ir clays

Estimation results

Permeability: 2.58E-07 ±5.66E-07 m/s N₆₀: 20.30 ±6.77 blows Es: 107.47 ±19.06 MPa Dr (%): 35.94 ±5.45 ϕ (degrees): 36.55 ±0.76 ° Unit weight: 18.96 ±0.53 kN/m³ Constrained Mod.: 41.84 ±20.26 MPa Go: 110.43 ±30.66 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Location: 100 Hobsonville Road

CPT: CPT01

Total depth: 18.18 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

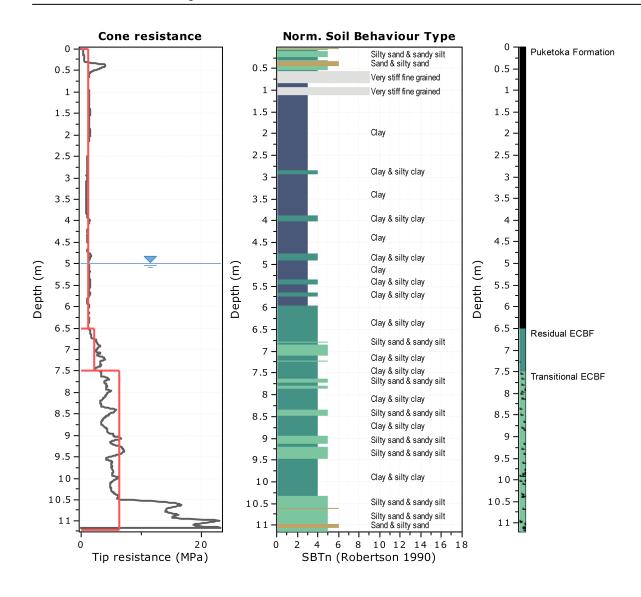
Summary table of mean values

From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E₅ (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, Go (MPa)	Undrained strength, Su (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m ³)
0.00	7.00	0.00E+00	6.0	0.0	0.0	0.0	10.2	36.1	88.2	1.7	8.0	17.6
7.00	7.00	(±1.35E-06)	(±1.3)	(±0.0)	(±0.0)	(±0.0)	(±2.4)	(±8.6)	(±21.5)	(±1.3)	(±6.2)	(±0.7)
7.00	6.00	7.37E-08	10.5	0.0	0.0	0.0	19.0	59.1	184.9	1.4	6.3	17.8
13.00	0.00	(±5.77E-08)	(±1.7)	(±0.0)	(±0.0)	(±0.0)	(±3.9)	(±9.9)	(±38.8)	(±0.2)	(±1.1)	(±0.4)
13.00	5.00	2.58E-07	20.3	107.5	35.9	36.6	41.8	110.4	0.0	0.0	0.0	19.0
18.00	5.00	(±5.66E-07)	(±6.8)	(±19.1)	(±5.5)	(±0.8)	(±20.3)	(±30.7)	(±0.0)	(±0.0)	(±0.0)	(±0.5)

Depth values presented in this table are measured from free ground surface

Location: 100 Hobsonville Road

CPT: CPT02


Total depth: 11.15 m, Date: 29/07/2024

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

Depth (m) Elevation: 0.00 (m)	Description	qt (MPa)	Ksbt (m/s)	N 60	Es (MPa)	Dr	Phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR	Gamma (kN/m³)
	0.00 Puketoka Formation	1.1	2.23E-8	5.3	-	-	-	8.7	32.4	75.6	1.4	6.7	17.3
0.5													
1													
1.5													
2													
2.5													
3													
3.5													
4													
4.5													
5	.00												
5.5													
6													
6.5	6.50 Residual ECBF	2.2	9.89E-8	8.7	-	-	-	16.3	47.1	153.0	1.3	6.2	17.4
7													
7.5	7.50 🔐 🖳 Transitional ECBF	6.3	4.52E-7	22.2	133.9	53.7	39.9	49.1	120.3	-	-	-	19.5
8	week .												
8.5													
9													
9.5	مع بر بر بر بر بر بر												
10	تعیر ڈ ا ا ا ا ا ک ا												
	te the c												
10.5	۔ اب ک												
	کی ج												
0 20 1 2 3 4 Tip resistance (MPa) Ic													

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 6.50 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.15 \pm 0.22 MPa Sleeve friction: 0.00 \pm 54.16 kPa Ic: 0.00 \pm 2.83 σ_v ': 49.29 \pm 29.34 kPa SBTn: 0 SBTn description: N/A Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 2.23E-08 \pm 7.80E-08 m/s N₆₀: 5.28 \pm 0.98 blows Es: 0.00 \pm 0.00 MPa Dr (%): 0.00 \pm 0.00 ϕ (degrees): 0.00 \pm 0.00 ° Unit weight: 17.32 \pm 0.68 kN/m³ Constrained Mod.: 8.66 ±1.81 MPa Go: 32.36 ±6.59 MPa Su: 75.57 ±14.59 kPa Su ratio: 1.44 ±1.33 O.C.R.: 6.66 ±6.13

Code: Residual ECBIStart depth: 6.50 (m), End depth: 7.50 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 2.17 \pm 0.69 MPa Sleeve friction: 35.65 \pm 25.34 kPa Ic: 2.61 \pm 0.11 σ_v ': 101.15 \pm 2.77 kPa SBTn: 4 SBTn description: Clay & silty clay Schneider zone: Zone 1b Schneider desc.: Clays

Estimation results

- Permeability: 9.89E-08 ±1.57E-07 m/s N₆₀: 8.74 ±2.52 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 φ (degrees): 0.00 ±0.00 ° Unit weight: 17.40 ±0.77 kN/m³
- Constrained Mod.: 16.35 ±5.51 MPa Go: 47.06 ±15.23 MPa Su: 153.03 ±48.25 kPa Su ratio: 1.35 ±0.48 O.C.R.: 6.23 ±2.23

.:: Layer No: 3 ::.

Code: Transitional ESBārt depth: 7.50 (m), End depth: 11.20 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: 6.32 ± 5.78 MPa Sleeve friction: 156.50 ± 116.66 kPa Ic: 2.39 ± 0.22 σ_v ': 124.06 ± 10.20 kPa SBT_n: 5 SBTn description: Silty sand & sandy silt Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 4.52E-07 ±3.21E-06 m/s N_{60} : 22.15 ±13.83 blows Es: 133.94 ±37.68 MPa Dr (%): 53.68 ±11.41 ϕ (degrees): 39.89 ±1.68 ° Unit weight: 19.51 ±0.84 kN/m³ Constrained Mod.: 49.08 ±46.15 MPa Go: 120.35 ±59.66 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Location: 100 Hobsonville Road

CPT: CPT02

Total depth: 11.15 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Summary table of mean values

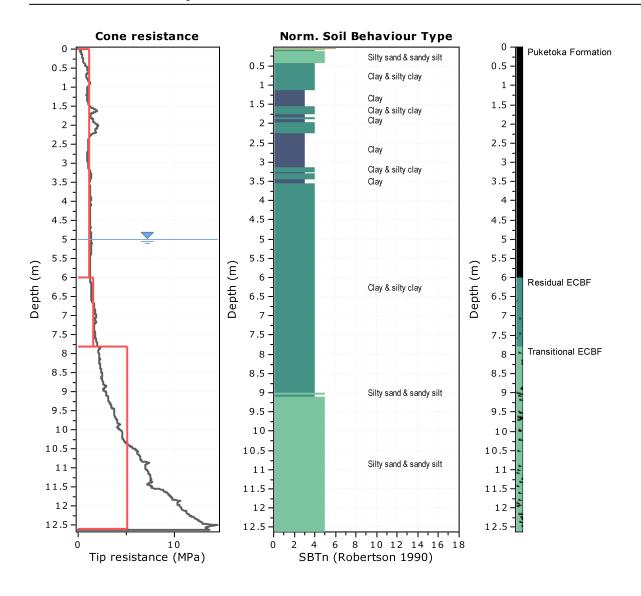
From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E _s (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, Go (MPa)	Undrained strength, S∪ (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m ³)
0.00	6.50	2.23E-08	5.3	0.0	0.0	0.0	8.7	32.4	75.6	1.4	6.7	17.3
6.50	0.50	(±7.80E-08)	(±1.0)	(±0.0)	(±0.0)	(±0.0)	(±1.8)	(±6.6)	(±14.6)	(±1.3)	(±6.1)	(±0.7)
6.50	1.00	9.89E-08	8.7	0.0	0.0	0.0	16.3	47.1	153.0	1.3	6.2	17.4
7.50	1.00	(±1.57E-07)	(±2.5)	(±0.0)	(±0.0)	(±0.0)	(±5.5)	(±15.2)	(±48.2)	(±0.5)	(±2.2)	(±0.8)
7.50	3.70	4.52E-07	22.2	133.9	53.7	39.9	49.1	120.3	0.0	0.0	0.0	19.5
11.20	5.70	(±3.21E-06)	(±13.8)	(±37.7)	(±11.4)	(±1.7)	(±46.2)	(±59.7)	(±0.0)	(±0.0)	(±0.0)	(±0.8)

Depth values presented in this table are measured from free ground surface

Location: 100 Hobsonville Road

СРТ: СРТ03

Total depth: 12.62 m, Date: 29/07/2024


Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

Depth (m) Elevation: 0.00 (m)	Description	qt (MPa)	Ksbt (m/s)	N 60	Es (MPa)	Dr	Phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR	Gamma (kN/m³)
	0.00 Puketoka Formation	1.2	4.76E-8	5.1	-	-	-	8.8	28.4	82.5	1.6	7.6	17.1
0.5													
1.5													
2													
2.5													
3													
3.5													
4													
4.5													
	<u>00</u>												
5.5	=												
	6.00 Residual ECBF	1.6	8.39E-8	6.6	-	-	-	11.8	33.1	133.0	1.1	4.9	16.5
6.5													
7													
7.5													
8	7.80 Transitional ECBF	5.0	5.93E-7	17.2	81.9	38.3	36.7	38.7	86.4	-	-	-	18.7
8.5													
9	년 ^년 글												
9.5	L Mail												
10													
10.5													
11													
11.5	కించ												
12													
12.5	ינריר יני דינייי דעריר יני דינייי												
0 10 1 2 3 4													
Tip resistance (MPa) Ic													

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 6.00 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.15 \pm 0.28 MPa Sleeve friction: 0.00 \pm 44.47 kPa Ic: 0.00 \pm 2.72 σ_v ': 40.38 \pm 30.29 kPa SBTn: 0 SBTn description: N/A Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 4.76E-08 ±1.41E-07 m/s N₆₀: 5.07 ±1.26 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 ϕ (degrees): 0.00 ±0.00 ° Unit weight: 17.13 ±0.66 kN/m³ Constrained Mod.: 8.80 ±2.19 MPa Go: 28.38 ±7.90 MPa Su: 82.45 ±17.89 kPa Su ratio: 1.65 ±1.12 O.C.R.: 7.62 ±5.15

Code: Residual ECBIStart depth: 6.00 (m), End depth: 7.80 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 1.59 \pm 0.22 MPa Sleeve friction: 17.83 \pm 4.79 kPa Ic: 2.64 \pm 0.04 σ_v ': 98.36 \pm 3.50 kPa SBT_n: 4 SBTn description: Clay & silty clay Schneider zone: Zone 1b Schneider desc.: Clays

Estimation results

- Permeability: 8.39E-08 ±2.09E-08 m/s N₆₀: 6.55 ±0.78 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 ϕ (degrees): 0.00 ±0.00 ° Unit weight: 16.48 ±0.36 kN/m³
- Constrained Mod.: 11.78 ±1.72 MPa Go: 33.12 ±4.71 MPa Su: 132.99 ±16.41 kPa Su ratio: 1.07 ±0.13 O.C.R.: 4.93 ±0.58

.:: Layer No: 3 ::.

Code: Transitional ESBārt depth: 7.80 (m), End depth: 12.60 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: 5.03 ± 3.44 MPa Sleeve friction: 80.99 ± 83.35 kPa Ic: 2.36 ± 0.16 σ_v ': 124.24 ± 12.29 kPa SBTn: 5SBTn description: Silty sand & sandy silt Schneider zone: Zone 1b Schneider desc.: Clays

Estimation results

Permeability: $5.93E-07 \pm 9.54E-07$ m/s N₆₀: 17.23 ± 9.45 blows Es: 81.88 ± 28.93 MPa Dr (%): 38.25 ± 7.66 ϕ (degrees): 36.69 ± 1.45 ° Unit weight: 18.66 ± 1.02 kN/m³ Constrained Mod.: 38.72 ±27.36 MPa Go: 86.41 ±46.73 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Location: 100 Hobsonville Road

СРТ: СРТ03

Total depth: 12.62 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Summary table of mean values

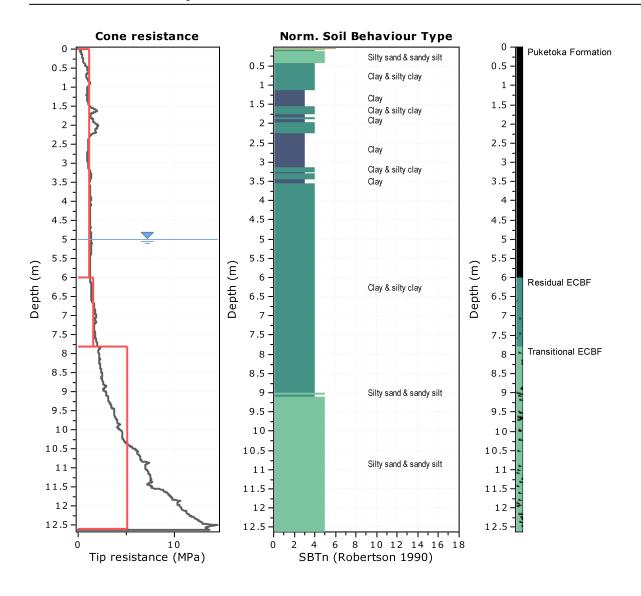
From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E₅ (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, G ₀ (MPa)	Undrained strength, Su (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.00	6.00	4.76E-08	5.1	0.0	0.0	0.0	8.8	28.4	82.5	1.6	7.6	17.1
6.00	0.00	(±1.41E-07)	(±1.3)	(±0.0)	(±0.0)	(±0.0)	(±2.2)	(±7.9)	(±17.9)	(±1.1)	(±5.2)	(±0.7)
6.00	1.80	8.39E-08	6.6	0.0	0.0	0.0	11.8	33.1	133.0	1.1	4.9	16.5
7.80	1.00	(±2.09E-08)	(±0.8)	(±0.0)	(±0.0)	(±0.0)	(±1.7)	(±4.7)	(±16.4)	(±0.1)	(±0.6)	(±0.4)
7.80	4.80	5.93E-07	17.2	81.9	38.3	36.7	38.7	86.4	0.0	0.0	0.0	18.7
12.60	1.00	(±9.54E-07)	(±9.5)	(±28.9)	(±7.7)	(±1.4)	(±27.4)	(±46.7)	(±0.0)	(±0.0)	(±0.0)	(±1.0)

Depth values presented in this table are measured from free ground surface

Location: 100 Hobsonville Road

СРТ: СРТ03

Total depth: 12.62 m, Date: 29/07/2024


Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

Depth (m) Elevation: 0.00 (m)	Description	qt (MPa)	Ksbt (m/s)	N 60	Es (MPa)	Dr	Phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR	Gamma (kN/m³)
	0.00 Puketoka Formation	1.2	4.76E-8	5.1	-	-	-	8.8	28.4	82.5	1.6	7.6	17.1
0.5													
1.5													
2													
2.5													
3													
3.5													
4													
4.5													
	<u>00</u>												
5.5	=												
	6.00 Residual ECBF	1.6	8.39E-8	6.6	-	-	-	11.8	33.1	133.0	1.1	4.9	16.5
6.5													
7													
7.5													
8	7.80 Transitional ECBF	5.0	5.93E-7	17.2	81.9	38.3	36.7	38.7	86.4	-	-	-	18.7
8.5													
9	년 ^년 글												
9.5	L Mail												
10													
10.5													
11													
11.5	కించ												
12													
12.5	ינריר יני דינייי דעריר יני דינייי												
0 10 1 2 3 4													
Tip resistance (MPa) Ic													

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 6.00 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.15 \pm 0.28 MPa Sleeve friction: 0.00 \pm 44.47 kPa Ic: 0.00 \pm 2.72 σ_v ': 40.38 \pm 30.29 kPa SBTn: 0 SBTn description: N/A Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 4.76E-08 ±1.41E-07 m/s N₆₀: 5.07 ±1.26 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 ϕ (degrees): 0.00 ±0.00 ° Unit weight: 17.13 ±0.66 kN/m³ Constrained Mod.: 8.80 ±2.19 MPa Go: 28.38 ±7.90 MPa Su: 82.45 ±17.89 kPa Su ratio: 1.65 ±1.12 O.C.R.: 7.62 ±5.15

Code: Residual ECBIStart depth: 6.00 (m), End depth: 7.80 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 1.59 \pm 0.22 MPa Sleeve friction: 17.83 \pm 4.79 kPa Ic: 2.64 \pm 0.04 σ_v ': 98.36 \pm 3.50 kPa SBT_n: 4 SBTn description: Clay & silty clay Schneider zone: Zone 1b Schneider desc.: Clays

Estimation results

- Permeability: 8.39E-08 ±2.09E-08 m/s N₆₀: 6.55 ±0.78 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 ϕ (degrees): 0.00 ±0.00 ° Unit weight: 16.48 ±0.36 kN/m³
- Constrained Mod.: 11.78 ±1.72 MPa Go: 33.12 ±4.71 MPa Su: 132.99 ±16.41 kPa Su ratio: 1.07 ±0.13 O.C.R.: 4.93 ±0.58

.:: Layer No: 3 ::.

Code: Transitional ESBārt depth: 7.80 (m), End depth: 12.60 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: 5.03 ± 3.44 MPa Sleeve friction: 80.99 ± 83.35 kPa Ic: 2.36 ± 0.16 σ_v ': 124.24 ± 12.29 kPa SBTn: 5SBTn description: Silty sand & sandy silt Schneider zone: Zone 1b Schneider desc.: Clays

Estimation results

Permeability: $5.93E-07 \pm 9.54E-07$ m/s N₆₀: 17.23 ± 9.45 blows Es: 81.88 ± 28.93 MPa Dr (%): 38.25 ± 7.66 ϕ (degrees): 36.69 ± 1.45 ° Unit weight: 18.66 ± 1.02 kN/m³ Constrained Mod.: 38.72 ±27.36 MPa Go: 86.41 ±46.73 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Location: 100 Hobsonville Road

СРТ: СРТ03

Total depth: 12.62 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

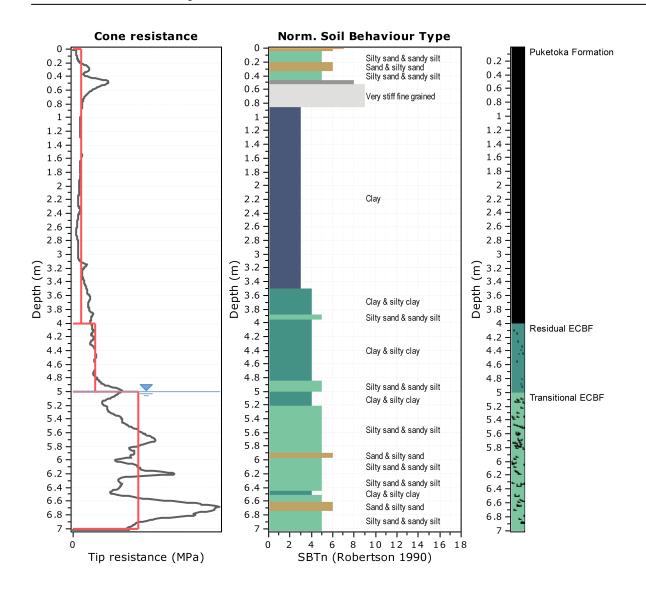
Summary table of mean values

From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E₅ (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, G ₀ (MPa)	Undrained strength, Su (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.00	6.00	4.76E-08	5.1	0.0	0.0	0.0	8.8	28.4	82.5	1.6	7.6	17.1
6.00	0.00	(±1.41E-07)	(±1.3)	(±0.0)	(±0.0)	(±0.0)	(±2.2)	(±7.9)	(±17.9)	(±1.1)	(±5.2)	(±0.7)
6.00	1.80	8.39E-08	6.6	0.0	0.0	0.0	11.8	33.1	133.0	1.1	4.9	16.5
7.80	1.00	(±2.09E-08)	(±0.8)	(±0.0)	(±0.0)	(±0.0)	(±1.7)	(±4.7)	(±16.4)	(±0.1)	(±0.6)	(±0.4)
7.80	4.80	5.93E-07	17.2	81.9	38.3	36.7	38.7	86.4	0.0	0.0	0.0	18.7
12.60	1.00	(±9.54E-07)	(±9.5)	(±28.9)	(±7.7)	(±1.4)	(±27.4)	(±46.7)	(±0.0)	(±0.0)	(±0.0)	(±1.0)

Depth values presented in this table are measured from free ground surface

Location: 100 Hobsonville Road

CPT: CPT04


Total depth: 7.02 m, Date: 29/07/2024

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

Depth (m) Elevation: 0.00 (m)	Description	qt (MPa)	Ksbt (m/s)	N 60	Es (MPa)	Dr	Phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR	Gamma (kN/m³)
0.0	0 Puketoka Formation	1.0	2.97E-8	4.6	-	-	-	7.7	27.6	57.4	1.8	8.5	17.5
0.2													
0.6													
0.8													
1.2													
1.4													
1.6													
1.8													
2													
2.2													
2.4													
2.6													
2.8	•												
3													
3.2													
3.4	•												
3.6													
3.8													
4 4.0	0 Residual ECBF	2.8	1.07E-7	11.1	-	-	-	21.7	65.6	181.4	2.3	10.5	18.5
4.6	1978 B												
5.00													
5.2	Transitional ECBF	8.3	1.93E-6	25.5	94.7	48.6	39.0	65.6	125.1	-	-	-	19.7
5.4													
5.6													
5.8	- 10 1012												
6													
6.2													
6.4	Real Provide State Stat												
6.6	ee Ee												
6.8													
7					<u> </u>					[
0 1 2 3 4													
Tip resistance (MPa) Ic													

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 4.00 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.00 \pm 0.74 MPa Sleeve friction: 0.00 \pm 71.31 kPa Ic: 0.00 \pm 2.81 σ_v ': 24.20 \pm 21.27 kPa SBT_n: 0 SBT description: N/A Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 2.97E-08 ±4.09E-06 m/s N₆₀: 4.56 ±2.15 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 ϕ (degrees): 0.00 ±0.00 ° Unit weight: 17.54 ±0.93 kN/m³ Constrained Mod.: 7.69 ±5.97 MPa Go: 27.57 ±12.57 MPa Su: 57.38 ±35.12 kPa Su ratio: 1.83 ±2.14 O.C.R.: 8.46 ±9.87

Code: Residual ECBIStart depth: 4.00 (m), End depth: 5.00 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 2.79 \pm 0.67 MPa Sleeve friction: 87.99 \pm 16.06 kPa Ic: 2.60 \pm 0.08 σ_v ': 79.08 \pm 4.68 kPa SBTn: 4 SBTn description: Clay & silty clay Schneider zone: N/A Schneider desc.: N/A

Estimation results

- Permeability: 1.07E-07 ±1.25E-07 m/s N₆₀: 11.12 ±1.95 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 φ (degrees): 0.00 ±0.00 ° Unit weight: 18.53 ±0.25 kN/m³
- Constrained Mod.: 21.69 ±5.33 MPa Go: 65.62 ±8.96 MPa Su: 181.40 ±16.63 kPa Su ratio: 2.28 ±0.15 O.C.R.: 10.53 ±0.67

.:: Layer No: 3 ::.

Code: Transitional ESBārt depth: 5.00 (m), End depth: 7.00 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: $8.32 \pm 3.60 \text{ MPa}$ Sleeve friction: $169.94 \pm 91.42 \text{ kPa}$ Ic: 2.19 ± 0.15 σ_v ': $98.87 \pm 5.13 \text{ kPa}$ SBTn: 5 SBTn description: Silty sand & sandy silt Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 1.93E-06 ±5.34E-06 m/s N₆₀: 25.48 ±8.67 blows Es: 94.69 ±26.86 MPa Dr (%): 48.57 ±8.84 ϕ (degrees): 39.01 ±1.72 ° Unit weight: 19.71 ±0.74 kN/m³ Constrained Mod.: 65.64 ±28.75 MPa Go: 125.10 ±40.48 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Location: 100 Hobsonville Road

CPT: CPT04

Total depth: 7.02 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

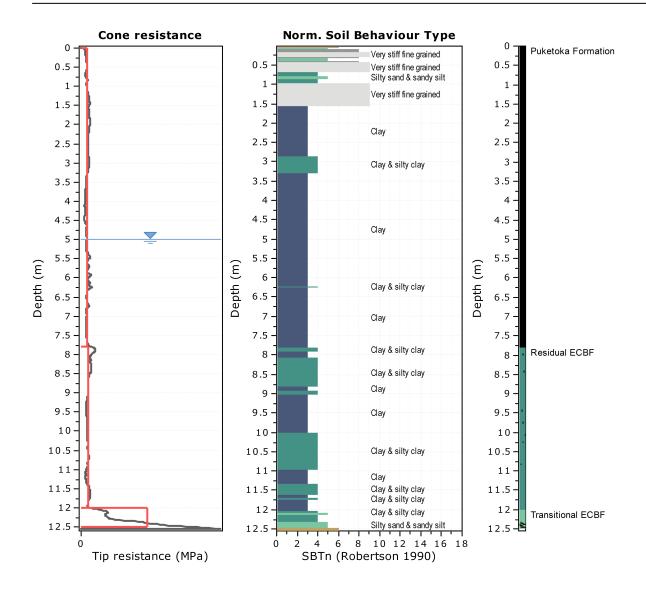
Summary table of mean values

From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E _s (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, Go (MPa)	Undrained strength, Su (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.00	4.00	2.97E-08	4.6	0.0	0.0	0.0	7.7	27.6	57.4	1.8	8.5	17.5
4.00	1.00	(±4.09E-06)	(±2.1)	(±0.0)	(±0.0)	(±0.0)	(±6.0)	(±12.6)	(±35.1)	(±2.1)	(±9.9)	(±0.9)
4.00	1.00	1.07E-07	11.1	0.0	0.0	0.0	21.7	65.6	181.4	2.3	10.5	18.5
5.00	1.00	(±1.25E-07)	(±1.9)	(±0.0)	(±0.0)	(±0.0)	(±5.3)	(±9.0)	(±16.6)	(±0.1)	(±0.7)	(±0.2)
5.00	2.00	1.93E-06	25.5	94.7	48.6	39.0	65.6	125.1	0.0	0.0	0.0	19.7
7.00	2.00	(±5.34E-06)	(±8.7)	(±26.9)	(±8.8)	(±1.7)	(±28.7)	(±40.5)	(±0.0)	(±0.0)	(±0.0)	(±0.7)

Depth values presented in this table are measured from free ground surface

Location: 100 Hobsonville Road

CPT: CPT05


Total depth: 12.55 m, Date: 29/07/2024

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

° I																	(kN/m³)
0.5	*****			0.00	Puketoka Formation	1.5	-	7.2	-	-	-	11.6	47.1	93.8	1.7	7.7	18.2
1	*****																
1.5	*****			•													
2	***************************************																
3		2		•													
3.5	*****			•													
4	*****																
4.5	*****																
5			5	.00													
5.5	*****	1															
6	***************************************	X		·													
6.5	*****	4															
7	*****																
8		5		7.80	Residual ECBF	1.8	1.64E-8	8.6	-	-	-	12.8	51.5	122.2	0.9	4.1	17.4
8.5	*****	_ (
9	*****																
9.5				1 0 0													
10	*****			•• -													
10.5	***************************************	ζ_		ء مريد													
11	*****																
11.5	***************************************																
12	~	_حـ		12.00 L L L	Transitional ECBF	17.1	3.72E-6	49.3	189.3	66.3	41.7	134.4	241.5	-	-	-	20.9

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 7.80 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.53 ± 0.40 MPa Sleeve friction: 0.00 ± 88.54 kPa Ic: 0.00 ± 2.87 σ_v ': 51.73 ± 37.67 kPa SBTn: 0 SBTn description: N/A Schneider zone: Zone 3 Schneider desc.: Transitional soils

Estimation results

Permeability: $0.00E+00 \pm 6.38E-06$ m/s N₆₀: 7.22 ±1.65 blows Es: 0.00 ± 0.00 MPa Dr (%): 0.00 ± 0.00 ϕ (degrees): 0.00 ± 0.00 ° Unit weight: 18.15 ± 0.56 kN/m³ Constrained Mod.: 11.60 ±3.30 MPa Go: 47.06 ±12.44 MPa Su: 93.79 ±26.92 kPa Su ratio: 1.67 ±1.95 O.C.R.: 7.73 ±9.00

Code: Residual ECBIStart depth: 7.80 (m), End depth: 12.00 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 1.80 \pm 0.52 MPa Sleeve friction: 39.37 \pm 28.60 kPa Ic: 2.87 \pm 0.11 σ_v ': 130.05 \pm 9.04 kPa SBT_n: 4 SBTn description: Clay & silty clay Schneider zone: N/A Schneider desc.: N/A

Estimation results

- Permeability: 1.64E-08 ±1.67E-08 m/s N₆₀: 8.58 ±1.99 blows Es: 0.00 ±0.00 MPa Dr (%): 0.00 ±0.00 φ (degrees): 0.00 ±0.00 ° Unit weight: 17.44 ±0.66 kN/m³
- Constrained Mod.: 12.76 ±4.33 MPa Go: 51.46 ±14.06 MPa Su: 122.18 ±35.32 kPa Su ratio: 0.89 ±0.36 O.C.R.: 4.10 ±1.64

.:: Layer No: 3 ::.

Code: Transitional ESEart depth: 12.00 (m), End depth: 12.50 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: 17.12 \pm 6.89 MPa Sleeve friction: 386.43 \pm 123.89 kPa Ic: 2.08 \pm 0.29 σ_v ': 150.16 \pm 1.37 kPa SBT_n: 5 SBTn description: Silty sand & sandy silt Schneider zone: N/A Schneider desc.: N/A

Estimation results

Permeability: 3.72E-06 \pm 5.00E-06 m/s N₆₀: 49.28 \pm 15.50 blows Es: 189.25 \pm 17.62 MPa Dr (%): 66.31 \pm 5.99 ϕ (degrees): 41.74 \pm 0.94 ° Unit weight: 20.93 \pm 0.84 kN/m³ Constrained Mod.: 134.38 ±55.39 MPa Go: 241.47 ±63.50 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

Location: 100 Hobsonville Road

CPT: CPT05

Total depth: 12.55 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

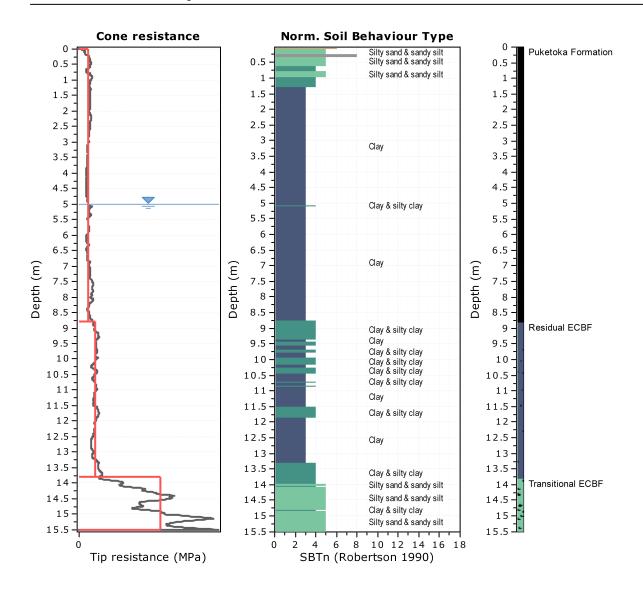
Summary table of mean values

From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E₅ (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, G ₀ (MPa)	Undrained strength, Su (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.00	7.80	0.00E+00	7.2	0.0	0.0	0.0	11.6	47.1	93.8	1.7	7.7	18.2
7.80	7.00	(±6.38E-06)	(±1.7)	(±0.0)	(±0.0)	(±0.0)	(±3.3)	(±12.4)	(±26.9)	(±1.9)	(±9.0)	(±0.6)
7.80	4.20	1.64E-08	8.6	0.0	0.0	0.0	12.8	51.5	122.2	0.9	4.1	17.4
12.00	4.20	(±1.67E-08)	(±2.0)	(±0.0)	(±0.0)	(±0.0)	(±4.3)	(±14.1)	(±35.3)	(±0.4)	(±1.6)	(±0.7)
12.00	0.50	3.72E-06	49.3	189.3	66.3	41.7	134.4	241.5	0.0	0.0	0.0	20.9
12.50	0.50	(±5.00E-06)	(±15.5)	(±17.6)	(±6.0)	(±0.9)	(±55.4)	(±63.5)	(±0.0)	(±0.0)	(±0.0)	(±0.8)

Depth values presented in this table are measured from free ground surface

Location: 100 Hobsonville Road

CPT: CPT06


Total depth: 15.51 m, Date: 29/07/2024

Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type:

Depth (m) Elevation: 0.00 (m)	Description	qt (MPa)	Ksbt (m/s)	N 60	Es (MPa)	Dr	Phi (°)	M (MPa)	Go (MPa)	Su (kPa)	Su ratio	OCR	Gamma (kN/m³)
0.5	0.00 Puketoka Formation	1.2	-	5.9	-	-	-	8.9	38.7	73.5	1.1	5.2	17.6
1.5													
2													
2.5													
3													
3.5	-												
4													
4.5	5.00												
5	<u>-5.00</u>												
5.5													
6.5													
7.5													
8													
8.5													
9	8.80 Residual ECBF	2.0	1.47E-8	9.7	-	-	-	14.6	60.9	132.7	1.0	4.4	17.8
9.5													
10													
10.5													
11	· · ·												
11.5													
12													
12.5													
13													
13.5													
14	13.80 Transitional ECBF	10.3	1.27E-6	32.7	129.6	45.3	38.2	80.0	166.9	-	-	-	20.0
14.5													
0 1 2 3	4												. <u> </u>
Tip resistance (MPa) Ic													

.:: Layer No: 1 ::.

Code: Puketoka Start depth: 0.00 (m), End depth: 8.80 (m)

Description: Puketoka Formation

Basic results

Total cone resistance: 1.20 \pm 0.25 MPa Sleeve friction: 0.00 \pm 62.46 kPa Ic: 0.00 \pm 2.94 σ_v ': 57.76 \pm 36.94 kPa SBTn: 0 SBT description: N/A Schneider zone: Zone 3 Schneider desc.: Transitional soils

Estimation results

Permeability: $0.00E+00 \pm 3.84E-06$ m/s N₆₀: 5.87 ± 1.22 blows Es: 0.00 ± 0.00 MPa Dr (%): 0.00 ± 0.00 ϕ (degrees): 0.00 ± 0.00 ° Unit weight: 17.62 ± 0.57 kN/m³ Constrained Mod.: 8.92 ±1.99 MPa Go: 38.66 ±9.17 MPa Su: 73.46 ±16.45 kPa Su ratio: 1.12 ±0.91 O.C.R.: 5.17 ±4.21

Code: Residual ECBIStart depth: 8.80 (m), End depth: 13.80 (m)

Description: Residual ECBF

Basic results

Total cone resistance: 2.03 ± 0.31 MPa Sleeve friction: 53.55 ± 10.15 kPa Ic: 2.89 ± 0.09 σ_v ': 137.16 ± 11.62 kPa SBTn: 3 SBTn description: Clay Schneider zone: Zone 1a Schneider desc.: Silts and low Ir clays

Estimation results

- Permeability: 1.47E-08 \pm 9.70E-09 m/s N₆₀: 9.72 \pm 1.15 blows Es: 0.00 \pm 0.00 MPa Dr (%): 0.00 \pm 0.00 ϕ (degrees): 0.00 \pm 0.00 ° Unit weight: 17.84 \pm 0.26 kN/m³
- Constrained Mod.: 14.61 ±2.50 MPa Go: 60.92 ±6.94 MPa Su: 132.66 ±24.08 kPa Su ratio: 0.95 ±0.19 O.C.R.: 4.40 ±0.86

.:: Layer No: 3 ::.

Code: Transitional ESEart depth: 13.80 (m), End depth: 15.50 (m)

Description: Transitional ECBF

Basic results

Total cone resistance: 10.28 ± 3.17 MPa Sleeve friction: 204.66 ± 76.85 kPa Ic: 2.25 ± 0.14 σ_v ': 167.42 ± 4.60 kPa SBTn: 5 SBTn description: Silty sand & sandy silt Schneider zone: Zone 1a Schneider desc.: Silts and low Ir clays

Estimation results

Permeability: 1.27E-06 \pm 9.36E-07 m/s N₆₀: 32.67 \pm 8.29 blows Es: 129.55 \pm 21.08 MPa Dr (%): 45.29 \pm 5.15 ϕ (degrees): 38.18 \pm 0.95 ° Unit weight: 20.00 \pm 0.62 kN/m³ Constrained Mod.: 79.96 ±25.39 MPa Go: 166.87 ±39.56 MPa Su: 0.00 ±0.00 kPa Su ratio: 0.00 ±0.00 O.C.R.: 0.00 ±0.00

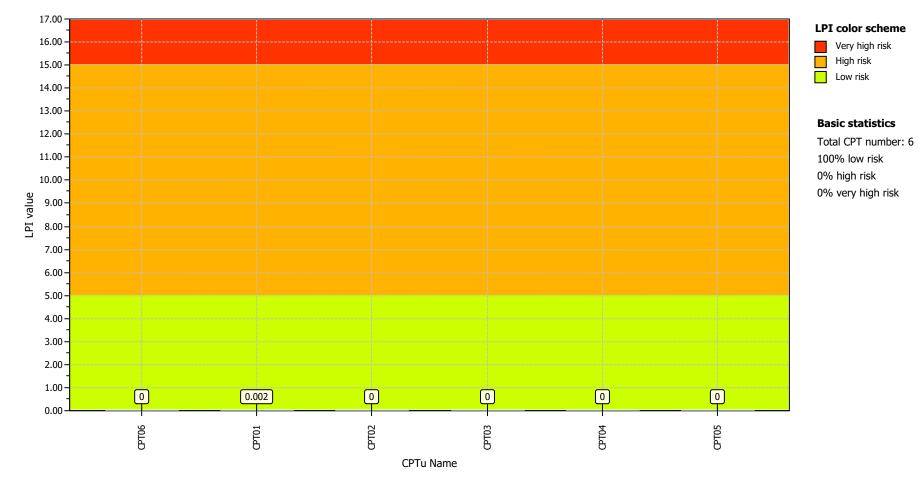
Project:

Location: 100 Hobsonville Road

CPT: CPT06

Total depth: 15.51 m, Date: 29/07/2024 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

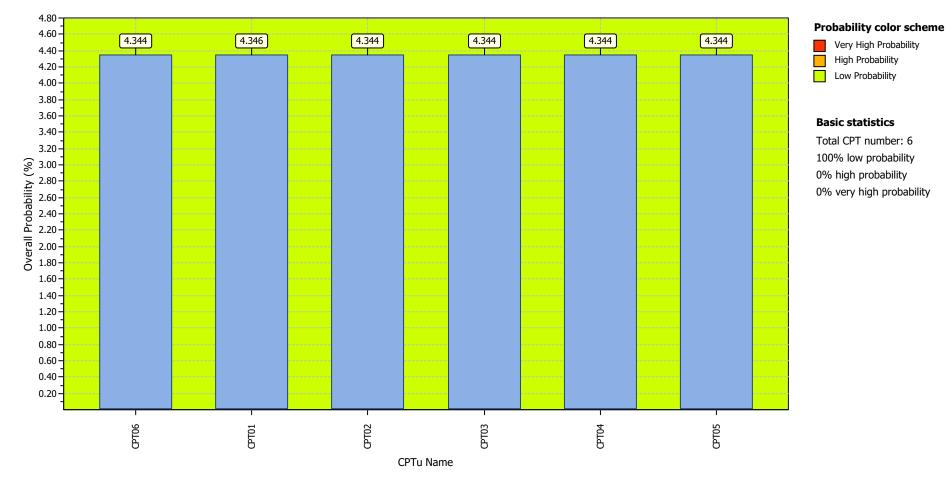
Summary table of mean values


From depth To depth (m)	Thickness (m)	Permeability (m/s)	SPT _{N60} (blows/30cm)	E _s (MPa)	D _r (%)	Friction angle	Constrained modulus, M (MPa)	Shear modulus, Go (MPa)	Undrained strength, Su (kPa)	Undrained strength ratio	OCR	Unit weight (kN/m³)
0.00	8.80	0.00E+00	5.9	0.0	0.0	0.0	8.9	38.7	73.5	1.1	5.2	17.6
8.80	0.00	(±3.84E-06)	(±1.2)	(±0.0)	(±0.0)	(±0.0)	(±2.0)	(±9.2)	(±16.5)	(±0.9)	(±4.2)	(±0.6)
8.80	5.00	1.47E-08	9.7	0.0	0.0	0.0	14.6	60.9	132.7	1.0	4.4	17.8
13.80	5.00	(±9.70E-09)	(±1.1)	(±0.0)	(±0.0)	(±0.0)	(±2.5)	(±6.9)	(±24.1)	(±0.2)	(±0.9)	(±0.3)
13.80	1.70	1.27E-06	32.7	129.6	45.3	38.2	80.0	166.9	0.0	0.0	0.0	20.0
15.50	1.70	(±9.36E-07)	(±8.3)	(±21.1)	(±5.1)	(±0.9)	(±25.4)	(±39.6)	(±0.0)	(±0.0)	(±0.0)	(±0.6)

Depth values presented in this table are measured from free ground surface

Project title :

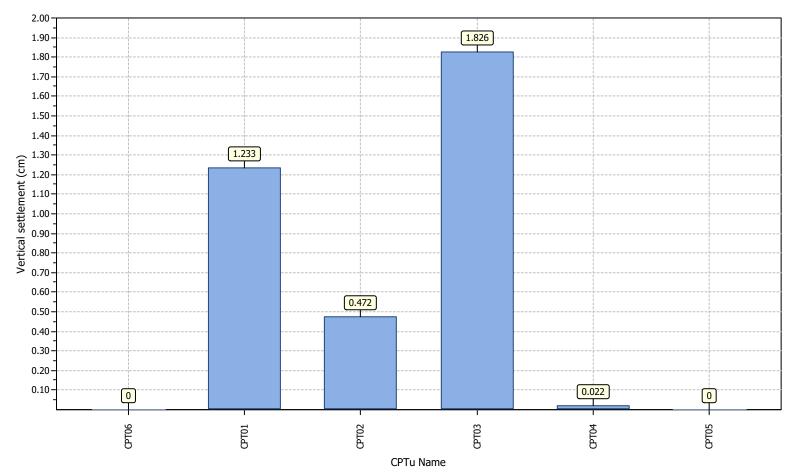
Location : 100 Hobsonville Road



Overall Liquefaction Potential Index report

Project title :

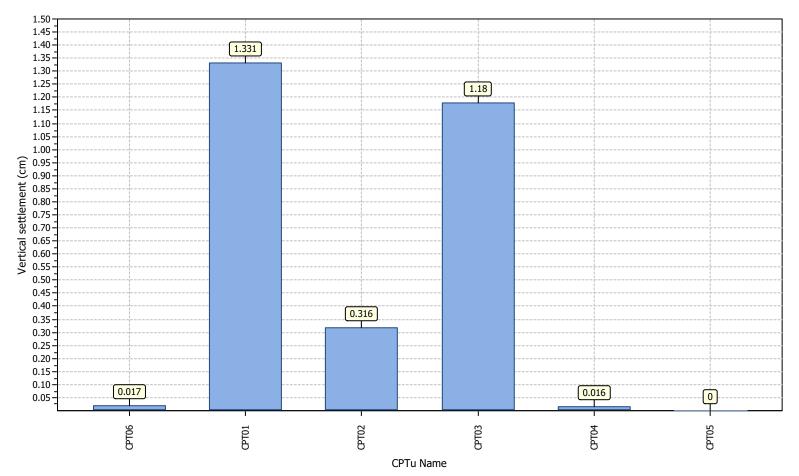
Location : 100 Hobsonville Road



Overall Probability for Liquefaction report

Project title :

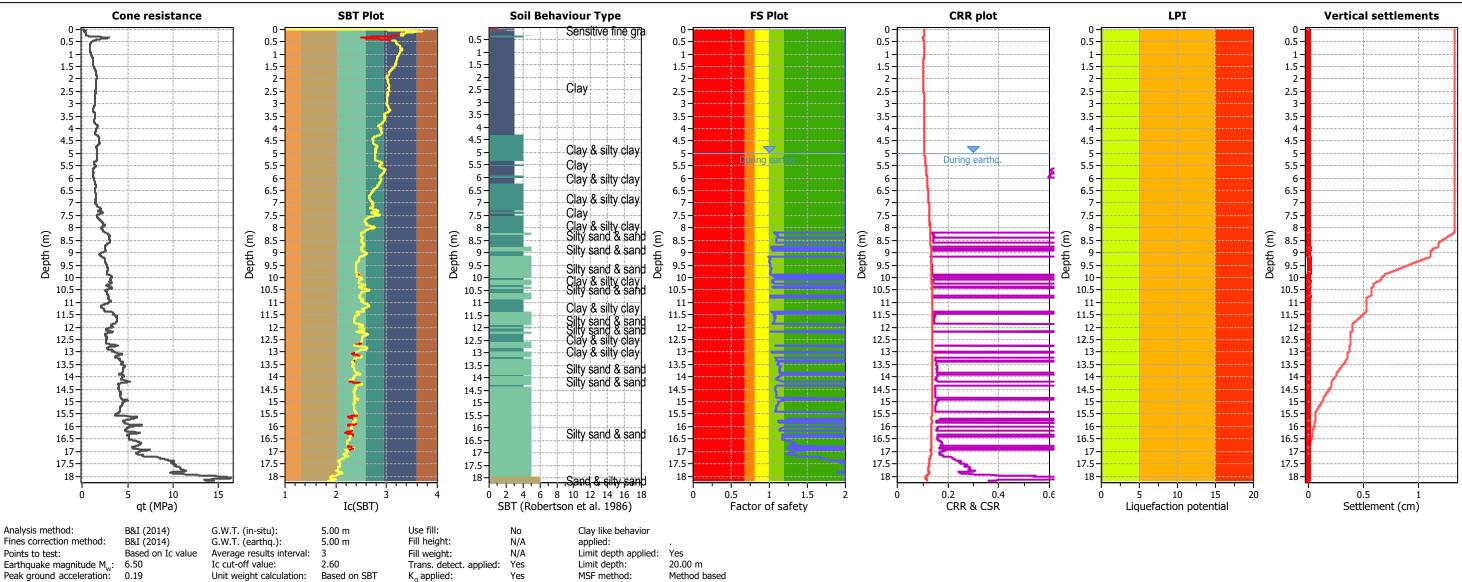
Location : 100 Hobsonville Road



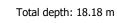
Overall vertical settlements report

Project title :

Location : 100 Hobsonville Road

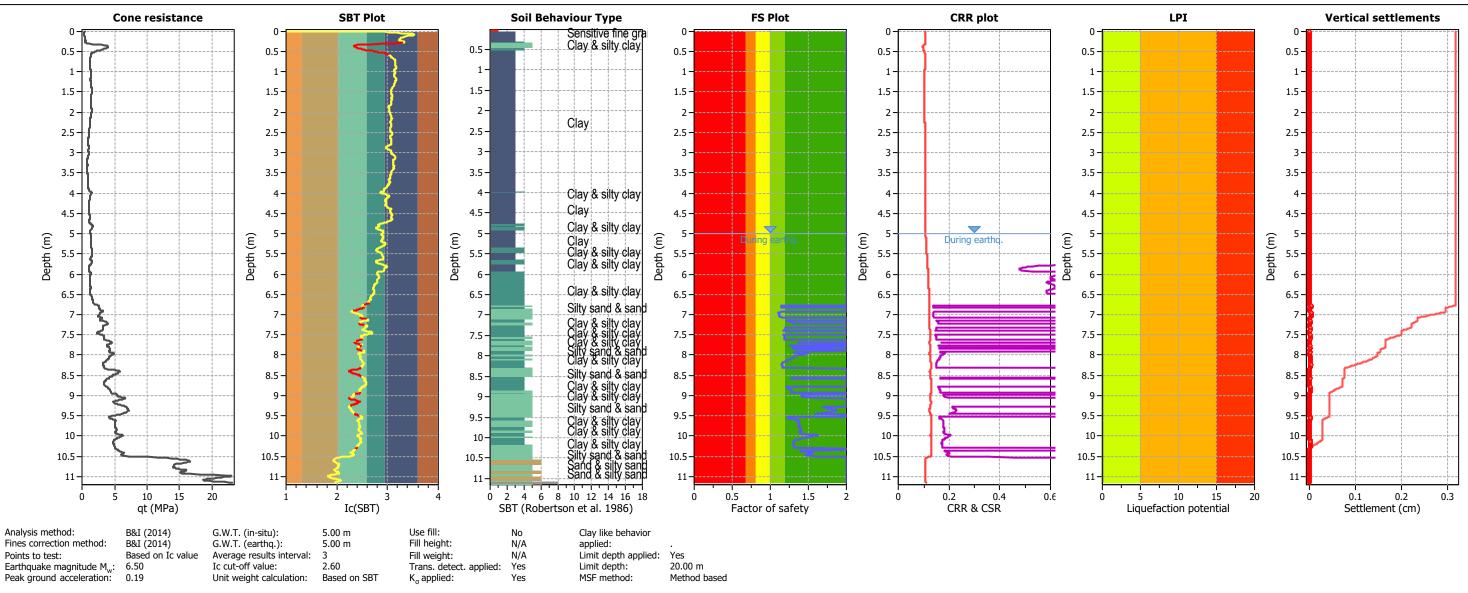


Overall vertical settlements report



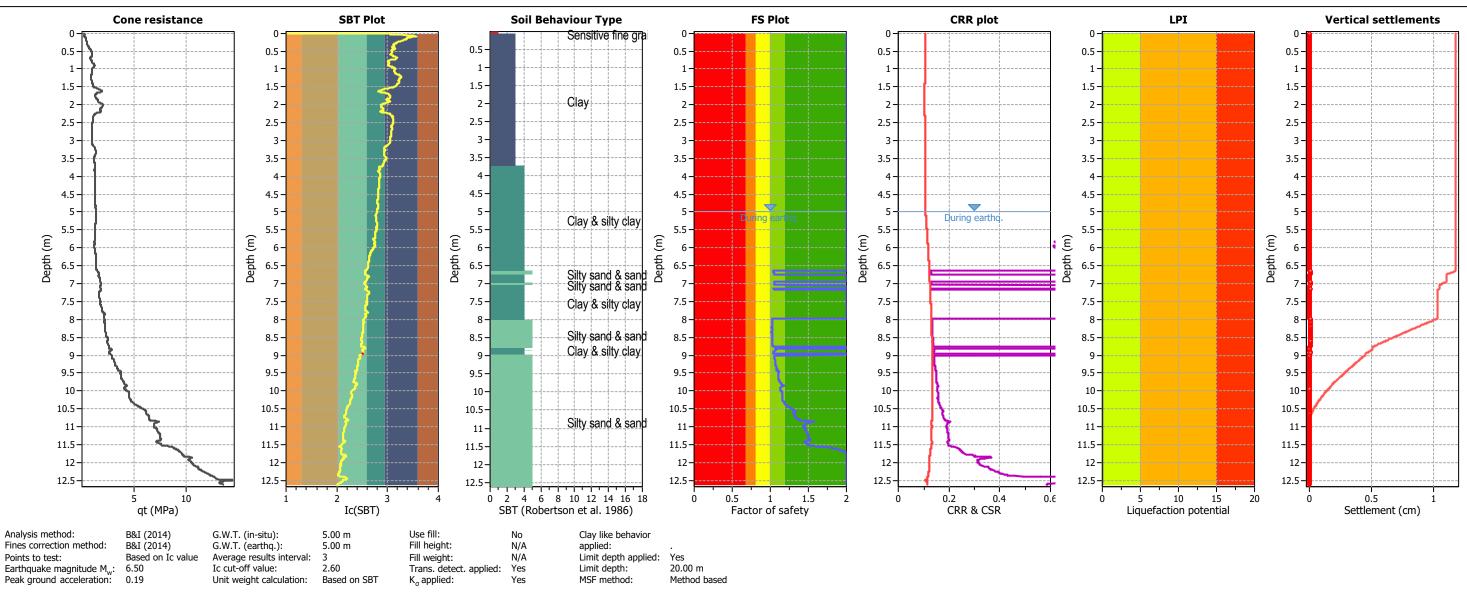
GeoLogismiki **Geotechnical Engineers** Merarhias 56

Project: Location: 100 Hobsonville Road



CPT: CPT01

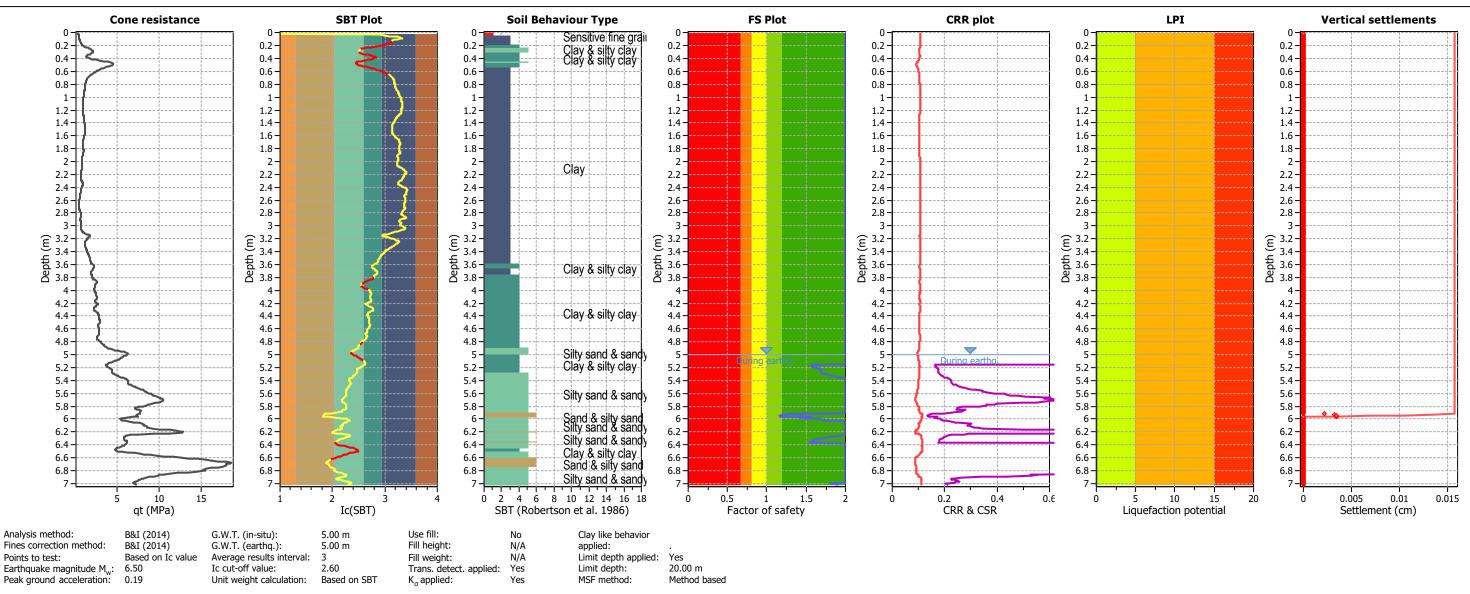
Project: Location: 100 Hobsonville Road



CPT: CPT02

Total depth: 11.15 m

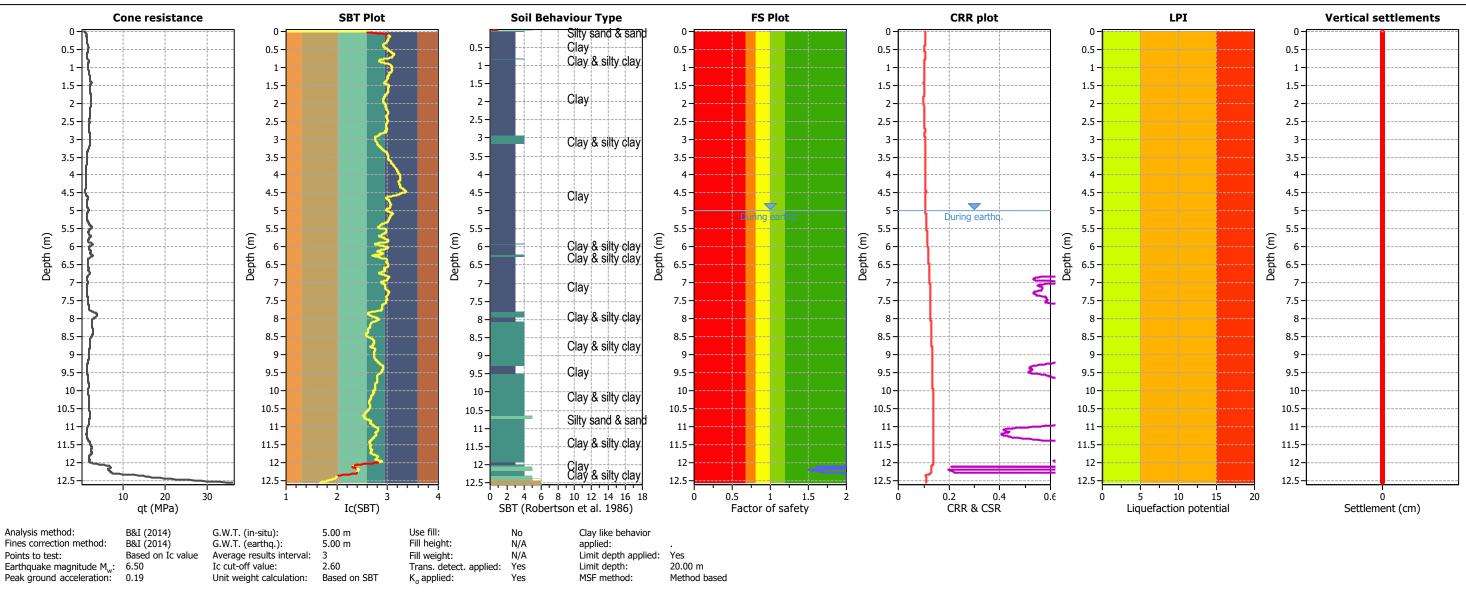
Project: Location: 100 Hobsonville Road



CPT: CPT03

Total depth: 12.62 m

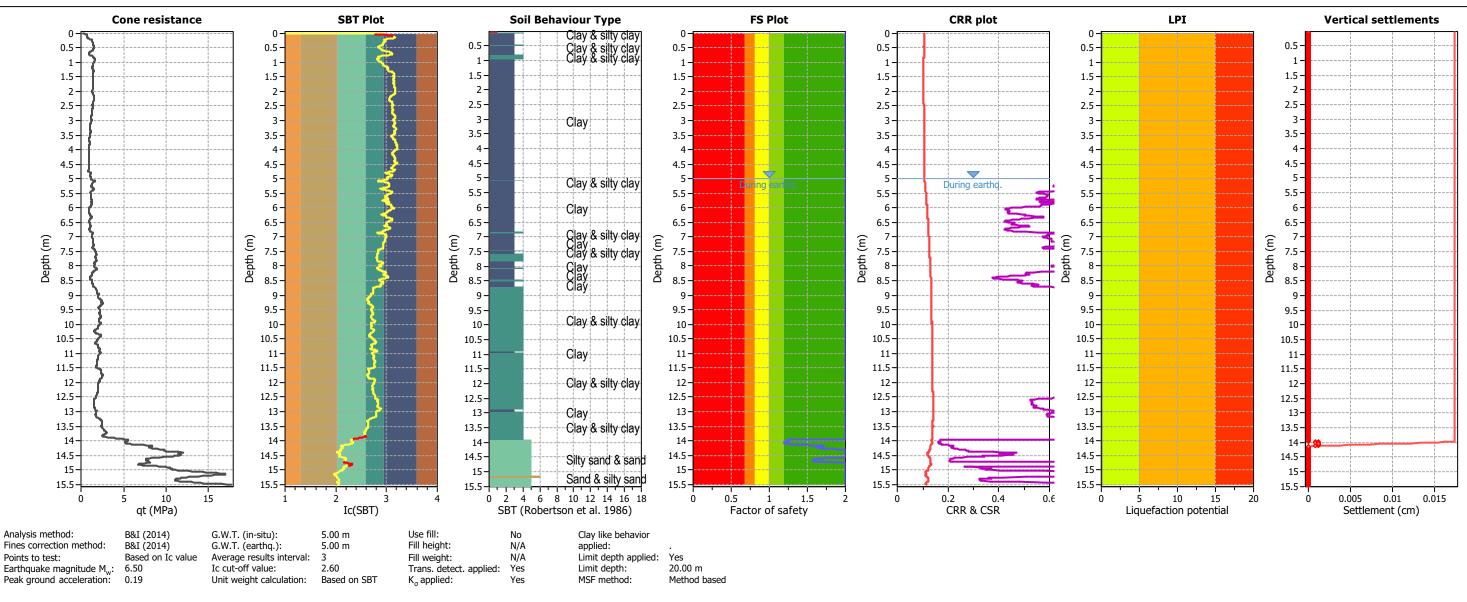
Project: Location: 100 Hobsonville Road


CPT: CPT04

Total depth: 7.02 m

Project:

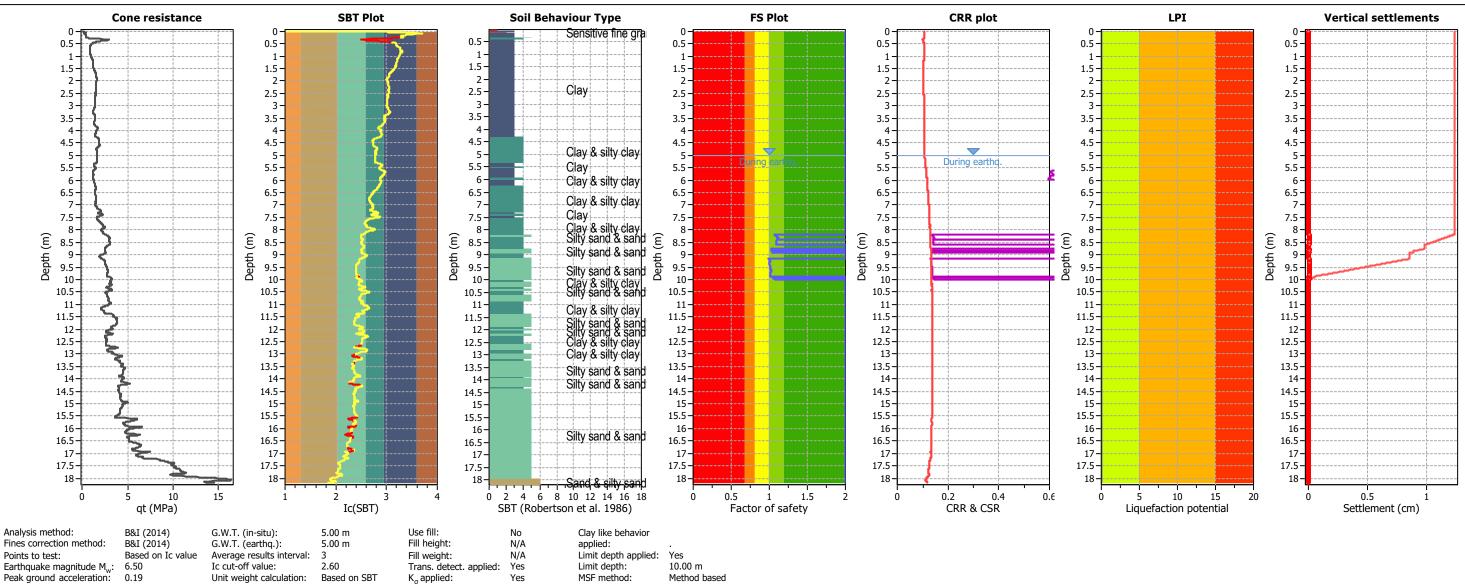
Location: 100 Hobsonville Road



CPT: CPT05

Total depth: 12.55 m

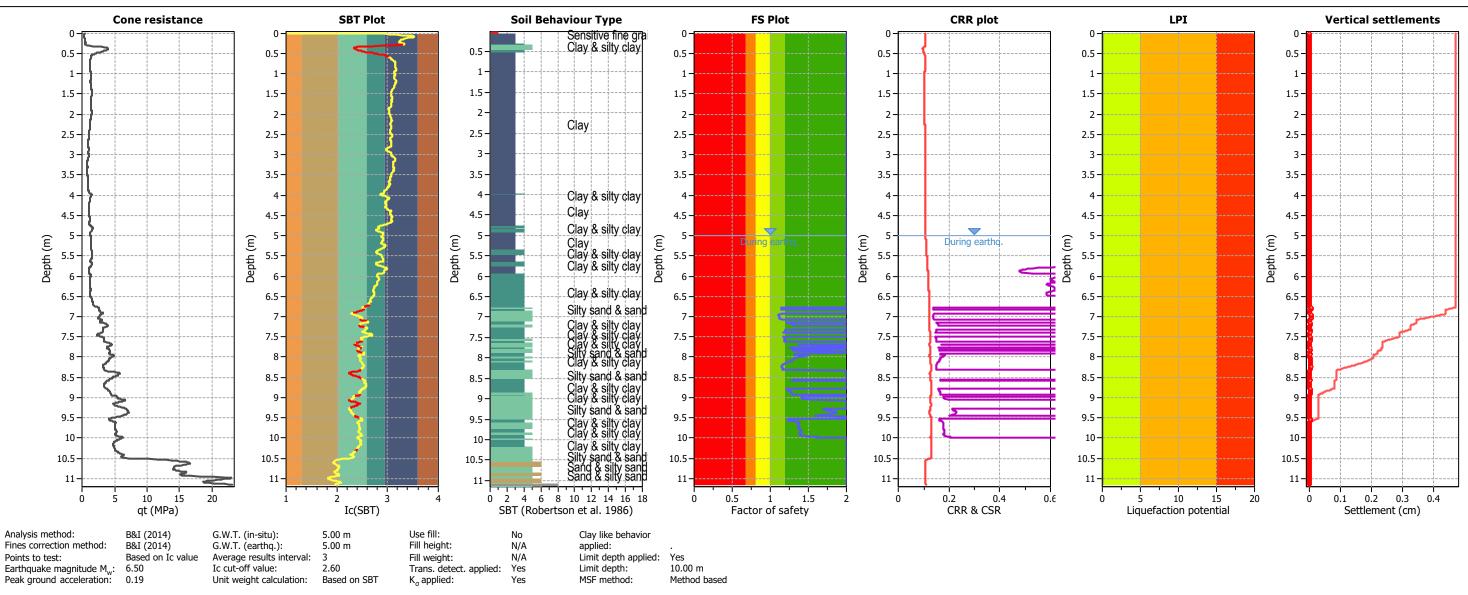
Project: Location: 100 Hobsonville Road



CPT: CPT06

Total depth: 15.51 m

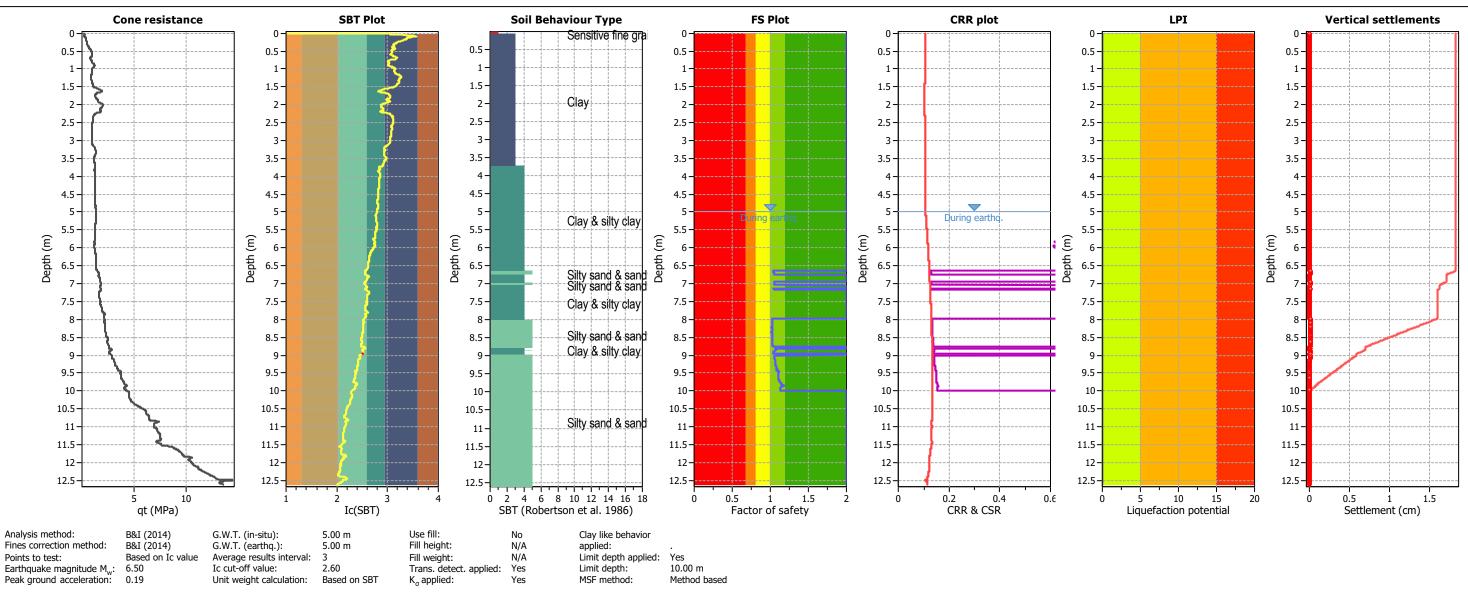
Project: Location: 100 Hobsonville Road



CPT: CPT01

Total depth: 18.18 m

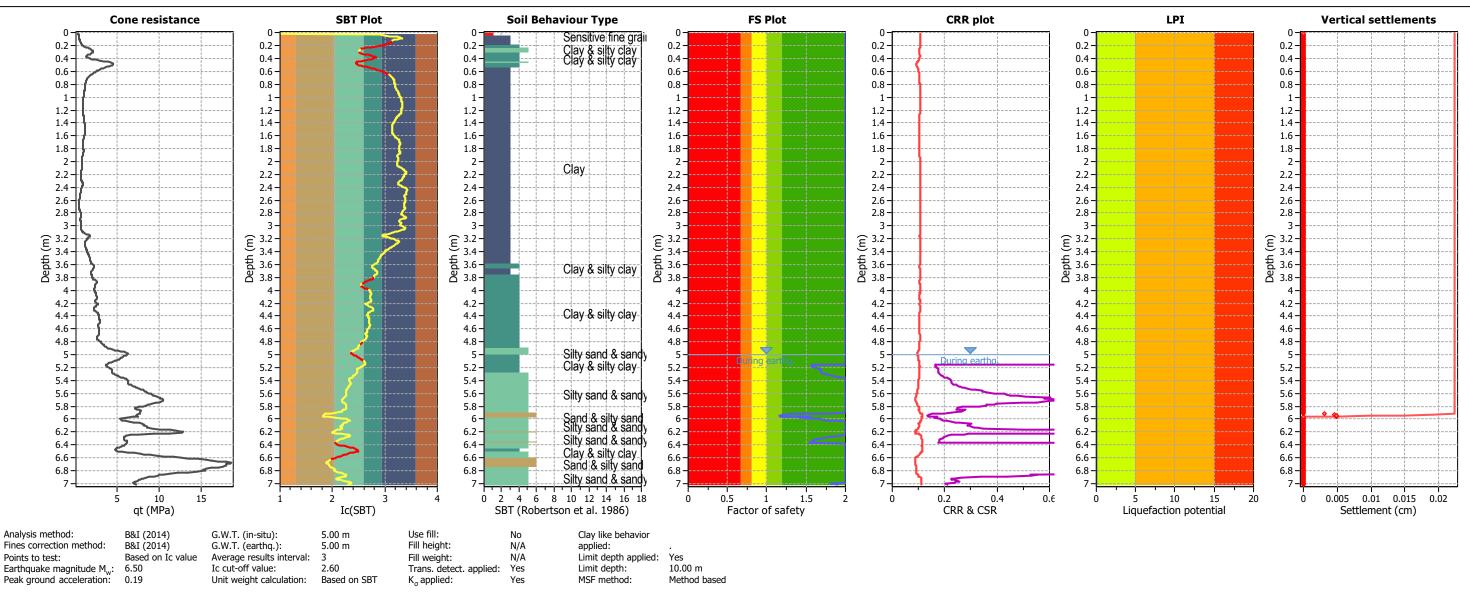
Project: Location: 100 Hobsonville Road



CPT: CPT02

Total depth: 11.15 m

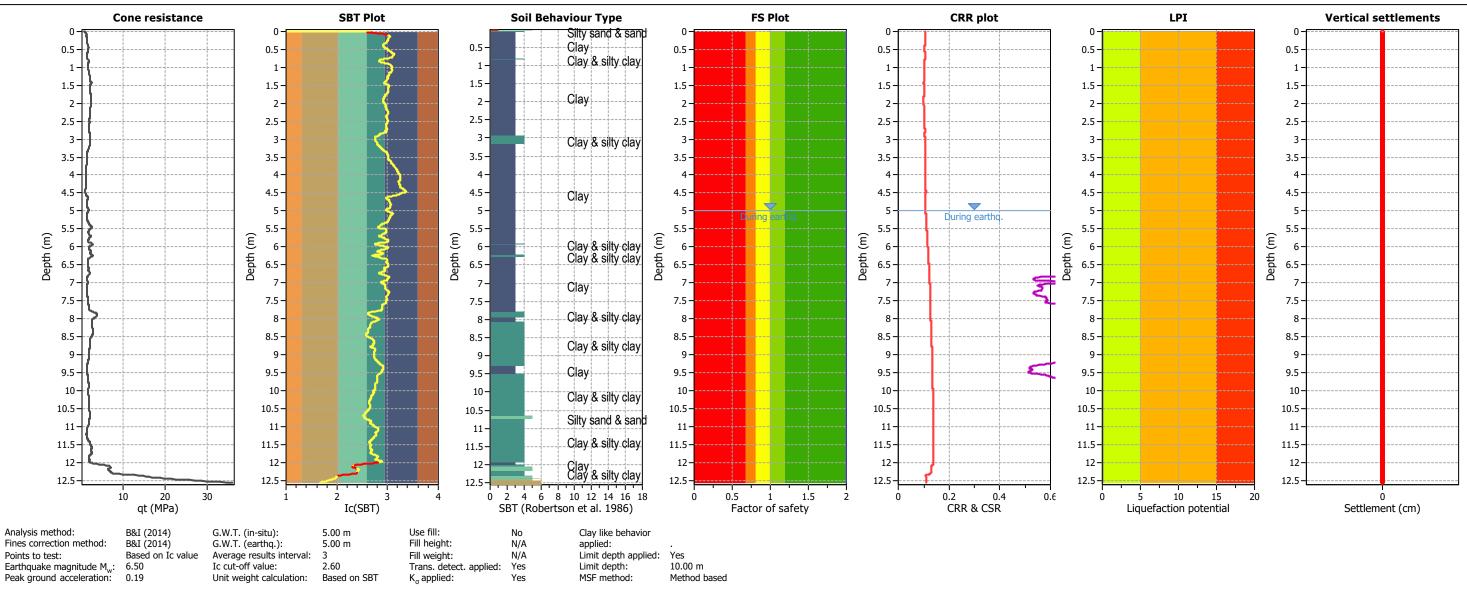
Project: Location: 100 Hobsonville Road



CPT: CPT03

Total depth: 12.62 m

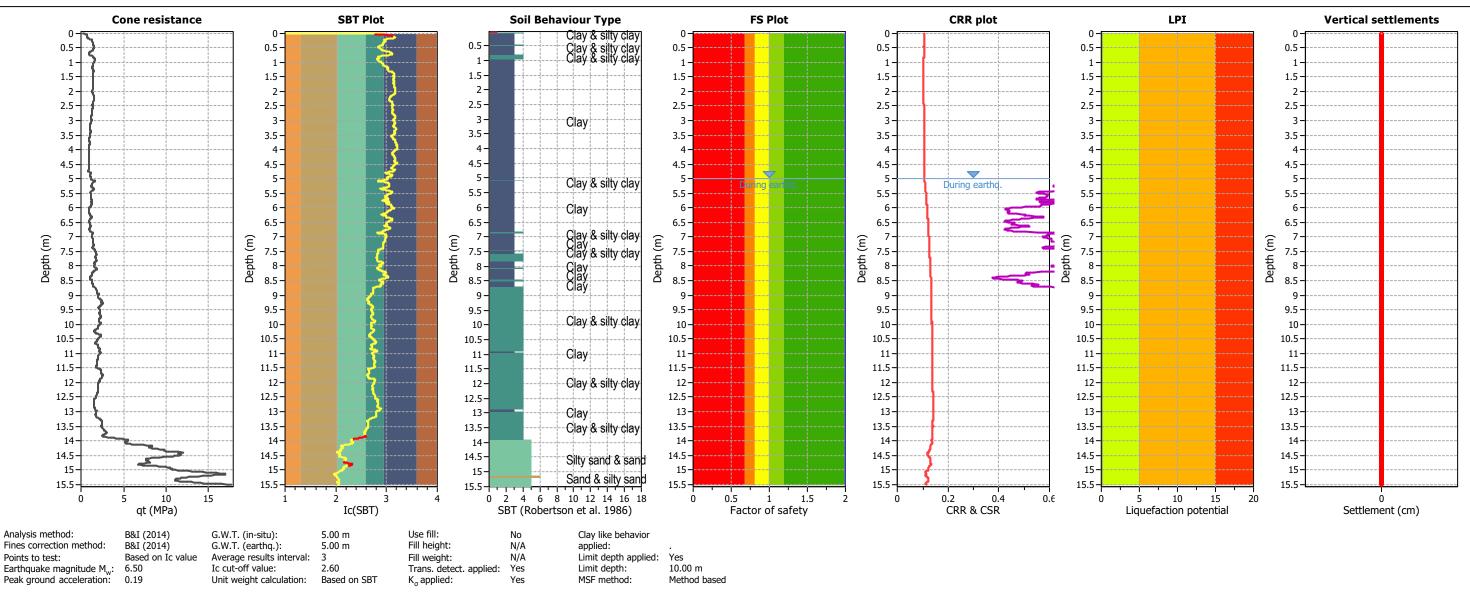
Project: Location: 100 Hobsonville Road


CPT: CPT04

Total depth: 7.02 m

Project:

Location: 100 Hobsonville Road



CPT: CPT05

Total depth: 12.55 m

Project: Location: 100 Hobsonville Road

CPT: CPT06

Total depth: 15.51 m

APPENDIX E

Geohazards Assessment & Mitigation Risk Register

Austino Property Group GEOTECHNICAL ASSESSMENT 100 HOBSONVILLE ROAD, HOBSONVILLE

GEOHAZARDS ASSESSMENT & MITIGATION RISK REGISTER

Geotechnical Hazard	Description	Area Assessed	Assessment Outcome	Existing Risk of	Damage to Land / Str	uctures	Mitigation Measure	Residual Risk of Damage to Land / Structures		
	Beschption			Likelihood	Consequence	Risk Rating		Likelihood	Consequence	Risk Rating
Water/Groundwater	Surface Water	Margins of Precinct 2	Whilst there are no watercourses defined with the site, nor are there any overland flow paths entering into the site, we do note that, from Auckland Council Geomaps, the potential for overland flow paths developing along the margins and flowing into the defined watercourses to the east, west and north of the landform.	4	2	8	For the purposes of this report, we have assumed that the overland flowpath extents can be filled. It can be assumed that any filling will have underfill drainage placed beneath it to allow the flow of any occasional water flows to continue and to prevent the build-up of groundwater pressures from developing beneath the fill.	1	2	2
	Stormwater Disposal	Entire Site	Stormwater runoff around the site, affecting future development in terms of surface eroison, shrink/swell and slope instability.	5	2	10	Stormwater soakage to ground is typically not feasible and will need to be reticulated and discharged away from the site.	1	2	2
Erosion	Cut Batters	Future cut areas	At the time of writing this report the extent of the cut areas are unknown. Mitigation is provided based on the factual data and observations made on site.	4	3	12	Mitigated by designing for maximum 1V:3H gradient, or steeper with surface stabilisation / treatment included in design (such as undercuts, by over excavation and replacement) as well as support with retaining walls.	1	3	3
	Fill Batters	Future fill areas	At the time of writing this report the extent of the fill areas are unknown. Mitigation is provided based on the factual data and observations made on site.	4	3	12	Mitigated by designing for maximum 1V:3H gradient, stormwater control and/ or steeper with surface stabilisation / treatment in design (such as reinforced earth slopes / retaining walls).	1	3	3
	Global Slope Instability	Elevated areas and slopes.	Most of the site is relatively gently sloping and not considered subject to instability risk.	2	4	8	The western and eastern margins of Precinct 2, adjacent to the watercourses may require slope stability remedial works comprising undercuts and/or small shear keys. Installation of retaining walls, palisade piles, or set-backs from the steeper slopes, may be required. This would be subject to detailed investigation and stability analysis, dependant on the earthworks and/or future development proposed.	1	4	4
Landslip/Instability	Soil Creep	Elevated areas and slopes.	A function of slope gradient and the expansive nature of the materials, movement is likely to be limited to approximately 1m to 1.5m depth, where present. Creep is limited to the sloped areas partially along ridge flanks.	4	3	12	To be mitigated by design of slope gradients, including use of retaining walls, subsoil drainage and by design of footings.	1	3	3
	Cut & Fill Batter Instability	Future cut, and fill areas	Both temporary and permanent batters need to be considered.	4	3	12	Mitigated by smart construction staging as well as controls on gradient, stormwater and surface stabilisation.	1	3	3
Expansive soils	Expansive Soils	Entire Site	Testing for expansive soils to be undertaken in future phases	4	4	16	Expansive soils are classified in NZS 3604 as those soils having a liquid limit of more than 50% and linear shrinkage of more than 15%. Alluvial soils are typically highly expansive. Mitigation of the expansive soil hazard is by foundation design at Building Consent stage and will be addressed on a lot-by-lot basis in the Geotechnical Completion Report(s) at the conclusion of the development works.	2	4	8

DESIGNER:	FK
CHECKED:	EC
JOB NO:	AKS2023-0062
DATE:	30/07/2024
ISSUED FOR:	RFI Response

Austino Property Group GEOTECHNICAL ASSESSMENT

GEOHAZARDS ASSESSMENT & MITIGATION RISK REGISTER

	Description	Area Assessed	Assessment Outcome	Existing Risk of Damage to Land / Structures				Residual Risk of Damage to Land / Structures		
Geotechnical Hazard	Description			Likelihood	Consequence	Risk Rating	Mitigation Measure	Likelihood	Consequence	Risk Rating
Subsidence	Soft soils/Load induced Settlement	Entire Site	The topography and existing information indicate that there are no significant concerns across Precinct 1 as well as within the upper 5m of the soil profile across Precinct 2. CPT test reuslts indicate that the depth of Puketoka Alluvial soils, should not exceed 9m depth, with the strengths in the stiff to very stiff range in turn overlying very stiff to hard residual ECBF materials.	3	4	12	In areas where fills and/ or significant building construction or storage loads are placed over soft deposits, allowance needs to be made for post-construction settlement of the fills and the underlying ground that could cause damage to structures. Consideration in the design needs to be given to the quantum of settlement that is likely to occur (i.e. ensuring it is insufficient to influence the cut/ fill volumes and balance during earthworks and/ or damage structures) and the time taken for the settlement to occur (i.e. ensuring it will be largely completed by the time a normal civil works programme would likely be commencing). The most appropriate mitigation is to avoid the potential for highly loaded structures in areas of weak/compressible materials during Master Planning, or to allow for ground improvement / piled foundations. However another remedial option for accelerating settlements in localised areas of deep alluvium / peat soils involve preloading. Locations and heights of surcharge must be subject to geotechnical review to avoid causing bearing capacity failure in the underlying alluvium.	2	4	8
Seismicity	Liquefaction	Entire Site	From the site-specific CPT investigation and analysis we confirm the liquefaction potential and probability of liquefaction to be low risk.	1	4	4	Not required.	1	4	4
	Uncontrolled fill overlying engineered fill	Precinct 1	Fill stockpile present at Precinct 1 will need to be removed.	5	4	20	Underlying engineered fill to be either approved or removed and replaced based on assessment from geotechnical engineer	2	4	8
Existing Fill	Uncontrolled fill	Precinct 2	Existing uncontrolled fill has been identified in an isolated location.	5	4	20	Re-engineering of existing fill may be required in some areas. Following environmental testing (by others) material reworking may be considered appropriate.	2	4	8

DESIGNER:	FK
CHECKED:	EC
JOB NO:	AKS2023-0062
DATE:	30/07/2024
ISSUED FOR:	RFI Response